Improved Ant Colony Optimization Algorithm for Reservoir Operation

نویسندگان

  • M. R. Jalali
  • A. Afshar
چکیده

In this paper, an improved Ant Colony Optimization (ACO) algorithm is proposed for reservoir operation. Through a collection of cooperative agents called ants, the near-optimum solution to the reservoir operation can be e ectively achieved. To apply the proposed ACO algorithm, the problem is approached by considering a nite horizon with a time series of in ow, classifying the reservoir volume to several intervals and deciding for releases at each period, with respect to a prede ned optimality criterion. Pheromone promotion, explorer ants and a local search are included in the standard ACO algorithm for a single reservoir, deterministic, nite-horizon problem and applied to the Dez reservoir in Iran. The results demonstrate that the proposed ACO algorithm provides improved estimates of the optimal releases of the Dez reservoir, as compared to traditional state-of-the-art Genetic Algorithms. It is anticipated that further tuning of the algorithmic parameters will further improve the computational e ciency and robustness of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CONSTRAINED BIG BANG-BIG CRUNCH ALGORITHM FOR OPTIMAL SOLUTION OF LARGE SCALE RESERVOIR OPERATION PROBLEM

A constrained version of the Big Bang-Big Crunch algorithm for the efficient solution of the optimal reservoir operation problems is proposed in this paper. Big Bang-Big Crunch (BB-BC) algorithm is a new meta-heuristic population-based algorithm that relies on one of the theories of the evolution of universe namely, the Big Bang and Big Crunch theory. An improved formulation of the algorithm na...

متن کامل

Method of Optimal Scheduling of Cascade Reservoirs based on Improved Chaotic Ant Colony Algorithm

On the basis of the analysis of the basic information of the river basin reservoirs and application of chaotic ant swarm algorithm, the medium-and long-term optimization operation model is established, which regards the maximum annual generation capacity of the cascade hydropower stations as the main purpose. The simulation result shows the algorithm improves the total annual power generation o...

متن کامل

Optimal Distributed Generation (DG) Allocation in Distribution Networks using an Improved Ant Colony Optimization (ACO) Algorithm

Abstract: The development of distributed generation (DGs) units in recent years have created challenges in the operation of power grids, especially distribution networks. One of these issues is the optimal allocation (location and capacity) of these units in distribution networks. In this thesis, a method based on the improved ant colony optimization algorithm is presented to solve the problem ...

متن کامل

Hybrid ANFIS with ant colony optimization algorithm for prediction of shear wave velocity from a carbonate reservoir in Iran

Shear wave velocity (Vs) data are key information for petrophysical, geophysical and geomechanical studies. Although compressional wave velocity (Vp) measurements exist in almost all wells, shear wave velocity is not recorded for most of elderly wells due to lack of technologic tools. Furthermore, measurement of shear wave velocity is to some extent costly. This study proposes a novel methodolo...

متن کامل

Hybrid Improved Dolphin Echolocation and Ant Colony Optimization for Optimal Discrete Sizing of Truss Structures

This paper presents a robust hybrid improved dolphin echolocation and ant colony optimization algorithm (IDEACO) for optimization of truss structures with discrete sizing variables. The dolphin echolocation (DE) is inspired by the navigation and hunting behavior of dolphins. An improved version of dolphin echolocation (IDE), as the main engine, is proposed and uses the positive attributes of an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006